Spray Tower (Dust Control), Fog Filter, Spray Chamber


Spray Tower (Dust Control), Fog Filter, Spray Chamber : Countercurrent-Flow Spray Tower. Spray towers or spray chambers are a form of pollution control technology. They consist of empty cylindrical vessels made of steel or plastic and nozzles that spray liquid into the vessels. The inlet gas stream usually enters the bottom of the tower and moves upward, while liquid is sprayed downward from one or more levels. This flow of inlet gas and liquid in the opposite direction is called countercurrent flow. This type of technology is a part of the group of air pollution controls collectively referred to as wet scrubbers. Countercurrent flow exposes the outlet gas with the lowest pollutant concentration to the freshest scrubbing liquid. Many nozzles are placed across the tower at different heights to spray all of the gas as it moves up through the tower. The reasons for using many nozzles is to maximize the number of fine droplets impacting the pollutant particles and to provide a large surface area for absorbing gas. Theoretically, the smaller the droplets formed, the higher the collection efficiency achieved for both gaseous and particulate pollutants. However, the liquid droplets must be large enough to not be carried out of the scrubber by the scrubbed outlet gas stream. Therefore, spray towers use nozzles to produce droplets that are usually 500–1000 µm in diameter. Although small in size, these droplets are large compared to those created in the venturi scrubbers that are 10–50 µm in size. The gas velocity is kept low, from 0.3 to 1.2 m/s (1–4 ft/s) to prevent excess droplets from being carried out of the tower. In order to maintain low gas velocities, spray towers must be larger than other scrubbers that handle similar gas stream flow rates. Another problem occurring in spray towers is that after the droplets fall short distances, they tend to agglomerate or hit the walls of the tower. Consequently, the total liquid surface area for contact is reduced, reducing the collection efficiency of the scrubber. thumb|left|300px|. Crosscurrent-Flow Spray Tower. In addition to a countercurrent-flow configuration, the flow in spray towers can be either a cocurrent or crosscurrent in configuration. In cocurrent-flow spray towers, the inlet gas and liquid flow in the same direction. Because the gas stream does not "push" against the liquid sprays, the gas velocities through the vessels are higher than in countercurrent-flow spray towers. Consequently, cocurrent-flow spray towers are smaller than countercurrent-flow spray towers treating the same amount of exhaust flow. In crosscurrent-flow spray towers, also called horizontal-spray scrubbers, the gas and liquid flow in directions perpendicular to each other. In this vessel, the gas flows horizontally through a number of spray sections. The amount and quality of liquid sprayed in each section can be varied, usually with the cleanest liquid (if recycled liquid is used) sprayed in the last set of sprays. (An OSH glossary used in safety and health at work which is, adopted by ILO
No records Found
afaatim.com copyright © April 2016 Dr.K.R.Kamaal. All rights reserved