Time, Distance, Shielding


Time, Distance, Shielding :

Three basic concepts apply to all types of ionizing radiation. When we develop regulations or standards that limit how much radiation a person can receive in a particular situation, we consider how these concepts might affect a person's exposure. (1) Time: The amount of radiation exposure increases and decreases with the time people spend near the source of radiation. In general, we think of the exposure time as how long a person is near radioactive material. It's easy to understand how to minimize the time for external (direct) exposure. Gamma and x-rays are the primary concern for external exposure. However, if radioactive material gets inside your body, you can't move away from it. You have to wait until it decays or until your body can eliminate it. When this happens, the biological half-life of the radionuclide controls the time of exposure. Biological half-life is the amount of time it takes the body to eliminate one half of the radionuclide initially present. Alpha and beta particles are the main concern for internal exposure. (2) Distance: The farther away people are from a radiation source, the less their exposure. How close to a source of radiation can you be without getting a high exposure? It depends on the energy of the radiation and the size (or activity) of the source. Distance is a prime concern when dealing with gamma rays, because they can travel long distances. Alpha and beta particles don't have enough energy to travel very far. As a rule, if you double the distance, you reduce the exposure by a factor of four. Halving the distance, increases the exposure by a factor of four. (3) Shielding: The greater the shielding around a radiation source, the smaller the exposure. Shielding simply means having something that will absorb radiation between you and the source of the radiation (but using another person to absorb the radiation doesn't count as shielding). The amount of shielding required to protect against different kinds of radiation depends on how much energy they have A thin piece of light material, such as paper, or even the dead cells in the outer layer of human skin provides adequate shielding because alpha particles can't penetrate it. However, living tissue inside body, offers no protection against inhaled or ingested alpha emitters. Additional covering, for example heavy clothing, is necessary to protect against beta-emitters. Some beta particles can penetrate and burn the skin Thick, dense shielding, such as lead, is necessary to protect against gamma rays. The higher the energy of the gamma ray, the thicker the lead must be. X-rays pose a similar challenge, so x-ray technicians often give patients receiving medical or dental X-rays a lead apron to cover other parts of their body. (EPA, Radiation Protection Basics, 2007 Update)

No records Found
afaatim.com copyright © April 2016 Dr.K.R.Kamaal. All rights reserved