Detectors 005


Detectors 005 : Ionization: (2) Classical ionization: Applying only classical physics and the Bohr model of the atom makes both atomic and molecular ionization entirely deterministic; that is, every problem will always have a definite and computable answer. According to classical physics, it is absolutely necessary that the energy of the electron exceeds the energy difference of the potential barrier it is trying to pass. In concept, this idea should make sense: The same way a person cannot jump over a one-meter wall without jumping at least one meter off the ground, an electron cannot get over a 13. 6-eV potential barrier without at least 13. 6 eV of energy. (2. 1) Applying to positive ionization: According to these two principles, the energy required to release an electron is strictly greater than or equal to the potential difference between the current bound atomic or molecular orbital and the highest possible orbital. If the energy absorbed exceeds this potential, then the electron is emitted as a free electron. Otherwise, the electron briefly enters an excited state until the energy absorbed is radiated out and the electron re-enters the lowest available state. (2. 2) Applying to negative ionization: Due to the shape of the potential barrier, according to these principles, a free electron must have an energy greater than or equal to that of the potential barrier in order to make it over. If a free electron has enough energy to do so, it will be bound to the lowest available energy state, and the remaining energy will be radiated away. If the electron does not have enough energy to surpass the potential barrier, then it is forced away by the electrostatic force, described by Coulombs Law, associated with the electric potential barrier. (2. 3) Sequential ionization: Sequential ionization is a description of how the ionization of an atom or molecule takes place. For example, an ion with a +2 charge can be created only from an ion with a +1 charge or a +3 charge. That is, the numerical charge of an atom or molecule must change sequentially, always moving from one number to an adjacent, or sequential, number
No records Found
afaatim.com copyright © April 2016 Dr.K.R.Kamaal. All rights reserved